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Abstract: In this paper, the class of E-differentiable vector optimization problems with both inequality and equal-
ity constraints is considered. For such (not necessarily) differentiable vector optimization problems, The so-called
scalar and vector Wolfe E-dual problems are defined for the considered E-differentiable multiobjective program-
ming problem with both inequality and equality constraints and several E-dual theorems are established also under
(generalized) E-invexity hypotheses.
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1 Introduction
Multiobjective optimization problems or vector op-
timization problems involving more than one objec-
tive function to be optimized simultaneously. Many
real life problems arising in several field of science,
engineering, economics, logistics, etc, are associated
with mathematical optimization problems. The con-
cept of invexity was first introduced by Hanson [13]
as a broad generalization of convexity for differen-
tiable real-valued functions defined on Rn. Hanson
proved that both Karush-Kuhn-Tucker sufficiency re-
sults and Wolfe weak duality, in differentiable mathe-
matical programming problems, hold with the invex-
ity assumption. Jeyakumar and Mond [14] general-
ized Hansons definition to the vectorial case. They de-
fined V-invexity of differentiable vector-valued func-
tions which preserve the sufficient optimality condi-
tions and duality results as in the scalar case and
avoid the major difficulty of verifying that the inequal-
ity holds for the same function η for invex functions
in multiobjective programming problems. Ben-Isreal
and Mond [5] have defined quasi-invex function as
a generalization of invex functions. Luc and Maliv-
ert [16] have extended the study of invexity to set-
valued maps and vector optimization problems with
set-valued data. Bazaraa et al. [6] have studied nec-
essary conditions for optimality in a nonlinear vector
optimization problem. Jeyakumar [15] defined gener-
alized invexity for nonsmooth scalar-valued functions,
established an equivalence of saddle points and op-
tima, and studied duality results for nonsmooth prob-
lems. The concept of invexity for multiobjective non-

linear programming problems have been introduced
and studied extensively in the literature (see, for ex-
ample, [5], [8], [9], [12], [16], and others).

Dorn [11] has been formulated dual theorems for
a class of convex programs for the primal problem of
minimizing a convex functions, the duality relation-
ship was established for a class of quadratic programs.
Wolfe [19] has been formulated a dual problem for the
mathematical programming problem of minimizing a
convex function under convex constraints, this con-
cept has been developed in the last decades in both
differentiable and nondifferentiable case. Craven [10]
has been introduced a modified wolfe dual for weak
vector minimization.

Recently, the concepts of E-convex sets and E-
convex functions were introduced by Youness [21].
This kind of generalized convexity is based on the
effect of an operator E : Rn → Rn on the sets and
the domains of functions. However, some results and
proofs presented by Youness [21] were incorrect as it
was pointed out by Yang [20]. Further, Megahed et
al. [18] presented the concept of an E-differentiable
convex function which transforms a (not necessarily)
differentiable convex function to a differentiable func-
tion based on the effect of an operator E : Rn → Rn.

Later, Abdulaleem [1] introduced a new con-
cept of generalized convexity for not necessarily dif-
ferentiable vector optimization problems. For E-
differentiable functions and called them E-invex with
respect to η. The concept of E-invexity is an extension
of the concept of E-differentiable E-convexity intro-
duced by Youness [21] and Megahed et al. [18] and
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invexity introduced by Hanson [13].
The main purpose of this paper is to use an E-

differentiable E-invexity notion to establish the so-
called Wolfe E-duality results for a new class of E-
differentiable E-invex vector optimization problems.
For the considered nonsmooth vector optimization
problem, we study both a scalar and vector E-duality
in the sense of Wolfe. By utilizing the concept of non-
smooth E-invexity, we prove various E-duality theo-
rems between the nonconvex E-differentiable vector
optimization problem and its E-duals in the sense of
Wolfe.

2 Preliminaries

Let Rn be the n-dimensional Euclidean space and Rn
+

be its nonnegative orthant. The following convention
for equalities and inequalities will be used in the pa-
per.

For any vectors x = (x1, x2, ..., xn)T and y =

(y1, y2, ..., yn)T in Rn, we define:

(i) x = y if and only if xi = yi for all i = 1, 2, ..., n;

(ii) x > y if and only if xi > yi for all i = 1, 2, ..., n;

(iii) x = y if and only if xi = yi for all i = 1, 2, ..., n;

(iv) x ≥ y if and only if x = y and x , y.

Definition 1 [18] Let E : Rn → Rn, and f : M →

R be a (not necessarily) differentiable function at a
given point u. It is said that f is an E-differentiable
function at u if and only if f ◦ E is a differentiable
function at u (in the usual sense) and, moreover,

( f ◦ E) (x) = ( f ◦ E) (u) + ∇ ( f ◦ E) (u) (x − u)

+θ (u, x − u) ‖x − u‖ , (1)

where θ (u, x − u)→ 0 as x→ u.

Definition 2 [1] Let E : Rn → Rn. A set M ⊆ Rn is
said to be an E-invex set (with respect to η : M×M →
Rn) if and only if there exists a vector-valued function
η : M × M → Rn such that the relation

E (u) + λη (E (x) , E (u)) ∈ M

holds for all x, u ∈ M and any λ ∈ [0, 1].

Definition 3 [1] Let E : Rn → Rn and f : M → Rk

be an E-differentiable function on a nonempty open
set M ⊂ Rn. It is said that f is E-invex with respect to
η at u ∈ M on M if, there exists η : M ×M → Rn such
that, for all x ∈ M,

fi(E(x))− fi(E(u)) = ∇ fi(E(u))η(E(x), E(u)), i = 1, ..., k.
(2)

If inequalities (2) hold for any u ∈ M, then f is E-
invex with respect to η on M.

Remark 4 From Definition 3, there are special cases:

a) If f is a differentiable function and E(x) ≡ x (E
is an identity map), then the definition of an E-
invex function reduces to the definition of an in-
vex function introduced by Hanson [13] in the
scalar case.

b) If η : M × M → Rn is defined by η(x, u) =

x − u, then we obtain the definition of an E-
differentiable E-convex vector-valued function
introduced by Megahed et al. [7].

c) If f is differentiable, E(x) = x and η(x, u) = x−u,
then the definition of an E-invex function reduces
to the definition of a differentiable convex vector-
valued function.

d) If f is differentiable and η(x, u) = x − u, then we
obtain the definition of a differentiable E-convex
function introduced by Youness [8].

Definition 5 [1] Let E : Rn → Rn and f : M → Rk

be an E-differentiable function on a nonempty open
set M ⊂ Rn. It is said that f is strictly E-invex with
respect to η at u ∈ M on M if, there exists η : M×M →
Rn such that, for all x ∈ M with E(x) , E(u), the
inequalities

fi(E(x))− fi(E(u)) > ∇ fi(E(u))η(E(x), E(u)), i = 1, ..., k,
(3)

hold. If inequalities (3) are fulfilled for any u ∈
M (E(x) , E(u)), then f is strictly E-invex with re-
spect to η on M.

Definition 6 [1] Let E : Rn → Rn and f : M → Rk be
an E-differentiable function on a nonempty open set
M ⊂ Rn. It is said that f is quasi-E-invex with respect
to η at u ∈ M on M if, there exists η : M × M → Rn

such that, for all x ∈ M and i = 1, ..., k,

fi(E(x))− fi(E(u)) 5 0⇒ ∇ fi(E(u))η(E(x), E(u)) 5 0.
(4)

If (4) holds for any u ∈ M, then f is quasi-E-invex
with respect to η on M.

Consider the following (not necessarily differ-
entiable) multiobjective programming problem (VP)
with both inequality and equality constraints:

minimize f (x) =
(

f1 (x) , ..., fp (x)
)

subject to g j(x) 5 0, j ∈ J = {1, ...,m} ,

ht(x) = 0, t ∈ T = {1, ..., q} ,

x ∈ X,

(VP)
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where X is nonempty open convex subset of Rn, fi :
X → R, i ∈ I = {1, ..., p}, g j : X → R, i ∈ I, ht :
X → R, j ∈ J, are real-valued functions defined on
X. We shall write g := (g1, ..., gm) : X → Rm and
h :=

(
h1, ..., hq

)
: X → Rq for convenience.

For the purpose of simplifying our presentation,
we will next introduce some notation which will be
used frequently throughout this paper. Let

Ω :=
{
x ∈ X : g j(x) 5 0, j ∈ J, ht(x) = 0, t ∈ T

}
be the set of all feasible solutions of (VP). Further,
by J (x), the set of inequality constraint indices that
are active at a feasible solution x, that is, J (x) ={
j ∈ J : g j(x) = 0

}
.

For such multicriterion optimization problems,
the following concepts of (weak) Pareto optimal so-
lutions are defined as follows:

Definition 7 A feasible point x is said to be a weak
Pareto (weakly efficient) solution for (VP) if and only
if there exists no feasible point x such that

f (x) < f (x).

Definition 8 A feasible point x is said to be a Pareto
(efficient) solution for (VP) if and only if there exists
no feasible point x such that

f (x) ≤ f (x).

Let E : Rn → Rn be a given one-to-one and onto
operator. Throughout the paper, we shall assume that
the functions constituting the considered multiobjec-
tive programming problem (VP) are E-differentiable
at any feasible solution.

Now, for the considered multiobjective program-
ming problem (VP), we define its associated differen-
tiable vector optimization problem as follows:

minimize f (E(x)) =
(

f1(E(x)), ..., fp(E(x))
)

subject to g j(E(x)) 5 0, j ∈ J = {1, ...,m} ,

ht(E(x)) = 0, t ∈ T = {1, ..., q} ,

x ∈ X.

(VPE)

We call the problem (VPE) an E-vector optimization
problem. Let

ΩE :=
{
x ∈ X : g j(E(x)) 5 0, j ∈ J,

ht(E(x)) = 0, t ∈ T }

be the set of all feasible solutions of (VPE). Since
the functions constituting the problem (VP) are as-
sumed to be E-differentiable at any feasible solution

of (VP), by Definition 1, the functions constituting
the E-vector optimization problem (VPE) are differen-
tiable at any its feasible solution (in the usual sense).
Further, by JE (x), the set of inequality constraint in-
dices that are active at a feasible solution x, that is,
JE (x) =

{
j ∈ J :

(
g j ◦ E

)
(x) = 0

}
.

Lemma 9 [2] Let E : Rn → Rn be a one-to-one and
onto and
ΩE =

{
z ∈ X :

(
g j ◦ E

)
(z) 5 0, j ∈ J, (ht ◦ E) (z) = 0

, t ∈ T }. Then E (ΩE) = Ω.

Lemma 10 [2] Let x ∈ Ω be a weak Pareto solution
(Pareto solution) of the considered multiobjective pro-
gramming problem (VP). Then, there exists z ∈ ΩE
such that x = E (z) and z is a weak Pareto (Pareto)
solution of the E-vector optimization problem (VPE).

Lemma 11 [2] Let z ∈ ΩE be a weak Pareto (Pareto)
solution of the E-vector optimization problem (VPE).
Then E (z) is a weak Pareto solution (Pareto solution)
of the considered multiobjective programming prob-
lem (VP).

Remark 12 As it follows from Lemma 11, if z ∈ ΩE
is a weak Pareto (Pareto) solution of the E-vector op-
timization problem (VPE), then E (z) is a weak Pareto
solution (Pareto solution) of the considered multiob-
jective programming problem (VP). We call E (z) a
weak E-Pareto (E-Pareto) solution of the problem
(VP).

Now, under E-invexity hypotheses, we prove a
(weak) Pareto optimal solution in problem (VPE)
(and, thus, a (weak) E-Pareto solution of the consid-
ered multiobjective programming problem (VP)).

Theorem 13 Let E : Rn → Rn be an operator such
that E (x) ∈ Ω and the functions fi, i ∈ I, g j, j ∈ J, ht,
t ∈ T +, −ht, t ∈ T−, are an E-invex E-differentiable at
x. If there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ξ ∈ Rs such that

p∑
i=1

λi∇ fi (E(x))+
m∑

j=1

µ j∇g j (E(x))+
s∑

t=1

ξt∇ht (E(x)) = 0,

(5)
m∑

j=1

µ jg j (E(x)) = 0, j ∈ J (E (x)) , (6)

Then x is a (weak) Pareto optimal solution in problem
(VPE) (and, thus, E (x) be a (weak) E-Pareto solution
of the considered multiobjective programming prob-
lem (VP)).
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Proof: Suppose that x is not an (weak) Pareto optimal
solution of the problem (VPE). Then, by Definition
8, there exists x ∈ ΩE such that f (E(x)) ≤ f (E(x)),
λ ∈ Rp we have

p∑
i=1

λi ( fi ◦ E) (x) <
p∑

i=1

λi ( fi ◦ E) (x) (7)

holds. Since the functions fi, i ∈ I, g j, j ∈ J, ht,
t ∈ T +, −ht, t ∈ T−, are an E-invex E-differentiable at
x, by Proposition 3, the inequalities

fi(E (x)) − fi(E (x)) = ∇ fi(E (x))η (E (x) , E(x)) , i ∈ I,
(8)

g j(E (x))−g j(E (x)) = ∇g j(E (x))η (E (x) , E (x)) , j ∈ J,
(9)

ht(E (x))−ht(E (x)) = ∇ht(E (x))η (E (x) , E (x)) , t ∈ T +,
(10)

−ht(E (x)) + ht(E (x)) =

−∇ht(E (x))η (E (x) , E (x)) , t ∈ T− (E (x)) , (11)

hold, respectively. Multiplying inequalities (8)-(11)
by the corresponding Lagrange multipliers, respec-
tively, we obtain

p∑
i=1

λi ( fi ◦ E) (x) −
p∑

i=1

λi ( fi ◦ E) (x) =

p∑
i=1

λi∇ ( fi ◦ E) (x) η (E (x) , E (x)) , i ∈ I, (12)

m∑
j=1

µi

(
g j ◦ E

)
(x) −

m∑
j=1

µi

(
g j ◦ E

)
(x) =

m∑
j=1

µi∇
(
g j ◦ E

)
(x) η (E (x) , E (x)) , j ∈ J (E (x)) ,

(13)
s∑

t=1

ξi (ht ◦ E) (x) −
s∑

t=1

ξi (ht ◦ E) (x) =

s∑
t=1

ξi∇ (ht ◦ E) (x) η (E (x) , E (x)) , t ∈ T + (E (x)) ,

(14)

−

s∑
t=1

ξi (ht ◦ E) (x) +

s∑
t=1

ξi (ht ◦ E) (x) =

−

s∑
t=1

ξi∇ (ht ◦ E) (x) η (E (x) , E (x)) , t ∈ T− (E (x)) ,

(15)

Adding both sides of the above inequalities, we obtain
that the following inequality∑p

i=1 λi ( fi ◦ E) (x) −
∑p

i=1 λi ( fi ◦ E) (x)
+

∑m
j=1 µi

(
g j ◦ E

)
(x) −

∑m
j=1 µi

(
g j ◦ E

)
(x)

+
∑s

t=1 ξi (ht ◦ E) (x) −
∑s

t=1 ξi (ht ◦ E) (x)

=
[∑p

i=1 λi∇ ( fi ◦ E) (x) +
∑m

j=1 µi∇
(
g j ◦ E

)
(x)

+
∑s

t=1 ξi∇ (ht ◦ E) (x)
]
η (E (x) , E (x))

(16)
Thus, by (5), (6), we have the following inequality

p∑
i=1

λi ( fi ◦ E) (x) =
p∑

i=1

λi ( fi ◦ E) (x)−

m∑
j=1

µi

(
g j ◦ E

)
(x) =

p∑
i=1

λi ( fi ◦ E) (x) (17)

holds, contradicting the inequality (7). Thus, x is an
(weak) Pareto optimal solution of the problem (VPE).
Further, by 10, it follows that E (x) is a weak E-Pareto
solution of the problem (VP). ut

Theorem 14 [1] (E-Karush-Kuhn-Tucker necessary
optimality conditions). Let x ∈ ΩE be a weak Pareto
solution of the E-vector optimization problem (VPE)
(and, thus, E (x) be a weak E-Pareto solution of
the considered multiobjective programming problem
(VP)). Further, f , g, h are E-differentiable at x and the
E-Guignard constraint qualification be satisfied at x.
Then there exist Lagrange multipliers λ ∈ Rp, µ ∈ Rm,
ξ ∈ Rs such that

p∑
i=1

λi∇ fi (E(x))+
m∑

j=1

µ j∇g j (E(x))+
s∑

t=1

ξt∇ht (E(x)) = 0,

(18)
m∑

j=1

µ jg j (E(x)) = 0, j ∈ J (E (x)) , (19)

λ ≥ 0, µ = 0. (20)

3 Scalar E-Wolfe duality result

In this section, a scalar dual problem in the sense of
Wolfe is considered for the class of E-differentiable
E-invex vector optimization problems with inequality
and equality constraints. Let E : Rn → Rn be a given
operator. Consider the following dual problem in the
sense of Wolfe related to the considered vector opti-
mization problem (VP):
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ψE (y, λ, µ, ξ) =
∑p

i=1 λi ( fi ◦ E) (y)+∑m
j=1 µ j

(
g j ◦ E

)
(y) +

∑s
t=1 ξt (ht ◦ E) (y)→ max

s.t.
∑p

i=1 λi∇ ( fi ◦ E) (y) +
∑m

j=1 µ j∇
(
g j ◦ E

)
(y)+∑s

t=1 ξt∇ (ht ◦ E) (y) = 0, (WDE)

λ ∈ Rp, λ ≥ 0, µ ∈ Rm, µ = 0, ξ ∈ Rs.

where all functions are defined in the similar way
as for the considered vector optimization problem
(VP). Further, let

ΓE =

{
(y, λ, µ, ξ) ∈ Rn × Rp × Rm × Rq :

p∑
i=1

λi∇ ( fi ◦ E) (y) +

m∑
j=1

µ j∇(g j ◦ E)(y)+

q∑
t=1

ξt∇(ht ◦ E)(y) = 0, λ ≥ 0, µ = 0
}
.

be the set of all feasible solutions of the problem
(WDE). Further, YE = {y ∈ X : (y, λ, µ, ξ) ∈ ΓE}.
We call the scaler dual problem (WDE) Wolfe scaler
E-dual problem or scaler E-dual problem in the sense
of Wolfe.

Now, under E-invexity hypotheses, we prove du-
ality results between the E-vector problems (VPE) and
(WDE) and, thus, E-duality results between the prob-
lems (VP) and (WDE).

Theorem 15 (Weak duality between (VPE) and
(WDE) and also weak E-duality between (VP) and
(WDE)). Let z and (y, λ, µ, ξ) be any feasible solutions
of the problems (VPE) and (WDE), respectively. As-
sume, moreover, that each objective function fi, i ∈ I,
is E-invex at y on ΩE∪YE , each constraint function g j,
j ∈ J, is an E-invex function at y on ΩE∪YE , the func-
tions ht, t ∈ T + (y) and the functions −ht, t ∈ T− (y),
are E-invex at y on ΩE ∪ YE . Then

( f ◦ E) (z) = ψE (y, λ, µ, ξ) . (21)

In other words, E-weak duality holds between the
problems (VP) and (WDE), that is, for any feasible
solutions x and (y, λ, µ, ξ) of the problems (VP) and
(WDE), respectively, the following relation

f (x) = ψE (y, λ, µ, ξ) (22)

is true.

Proof: fi, i ∈ I(y), are an E-invex function at y on
ΩE ∪ YE , the constraint functions g j, j ∈ J(y), are an
E-invex function at y on ΩE ∪ YE , the functions ht,

t ∈ T + (y) and the function −ht, t ∈ T− (y), are an E-
invex functions at y on ΩE ∪ YE . Then, by Definition
3, the following inequalities

( fi ◦ E) (z) − ( fi ◦ E) (y) =

∇ ( fi ◦ E) (y) η (E (z) , E (y)) , i ∈ I (E (y)) , (23)(
g j ◦ E

)
(z) −

(
g j ◦ E

)
(y) =

∇
(
g j ◦ E

)
(y) η (E (z) , E (y)) , j ∈ J (E (y)) , (24)

(ht ◦ E) (z) − (ht ◦ E) (y) =

∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T + (E (y)) , (25)

− (ht ◦ E) (z) + (ht ◦ E) (y) =

−∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T− (E (y)) (26)

hold, respectively. Multiplying both sides of the above
inequalities by the associated Lagrange multipliers,
respectively, we obtain

λi ( fi ◦ E) (z) − λi ( fi ◦ E) (y) =

λi∇ ( fi ◦ E) (y) η (E (z) , E (y)) , i ∈ I (E (y)) , (27)

µ j
(
g j ◦ E

)
(z) − µ j

(
g j ◦ E

)
(y) =

µ j∇
(
g j ◦ E

)
(y) η (E (z) , E (y)) , j ∈ J (E (y)) , (28)

ξt (ht ◦ E) (z) − ξt (ht ◦ E) (y) =

ξt∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T + (E (y)) , (29)

−ξt (ht ◦ E) (z) + ξt (ht ◦ E) (y) =

−ξt∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T− (E (y)) .
(30)

We denote by

λ̂i =
λi∑

i∈I(E(y))
λi +

∑
j∈J(E(y))

µ j +
∑

t∈T +(E(y))
ξt −

∑
t∈T−(E(y))

ξt
,

(31)

µ̂ j =
µ j∑

i∈I(E(y))
λi +

∑
j∈J(E(y))

µ j +
∑

t∈T +(E(y))
ξt −

∑
t∈T−(E(y))

ξt
,

(32)

ξ̂+
t =

ξt∑
i∈I(E(y))

λi +
∑

j∈J(E(y))
µ j +

∑
t∈T +(E(y))

ξt −
∑

t∈T−(E(y))
ξt

,

(33)

ξ̂−t =
−ξt∑

i∈I(E(y))
λi +

∑
j∈J(E(y))

µ j +
∑

t∈T +(E(y))
ξt −

∑
t∈T−(E(y))

ξt
.

(34)
Note that 0 5 λ̂i 5 1, i ∈ I (E (y)) , but at least one λ̂i >
0 for some i ∈ I (E (y)) , 0 5 µ̂ j 5 1, j ∈ J (E (y)) ,
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0 5 ξ̂+
t 5 1, t ∈ T + (E (y)) , 0 5 ξ̂−t 5 1, t ∈ T− (E (y)) ,

and, moreover∑
i∈I(E(y))

λ̂i +
∑

j∈J(E(y))

µ̂ j +
∑

t∈T +(E(y))

ξ̂+
t +

∑
t∈T−(E(y))

ξ̂−t = 1.

(35)
Taking into account Equations (31)-(34) in the in-
equalities (27)-(30), we get, respectively,

λ̂i ( fi ◦ E) (z) − λ̂i ( fi ◦ E) (y) =

λ̂i∇ ( fi ◦ E) (y) η (E (z) , E (y)) , i ∈ I (E (y)) , (36)

µ̂ j
(
g j ◦ E

)
(z) − µ̂ j

(
g j ◦ E

)
(y) =

µ̂ j∇
(
g j ◦ E

)
(y) η (E (z) , E (y)) , j ∈ J (E (y)) , (37)

ξ̂+
t (ht ◦ E) (z) − ξ̂+

t (ht ◦ E) (y) =

ξ̂+
t ∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T + (E (y)) , (38)

−ξ̂−t (ht ◦ E) (z) + ξ̂−t (ht ◦ E) (y) =

−ξ̂−t ∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T− (E (y)) .
(39)

Adding both sides of the inequalities (36)-(39), and
then adding both sides of the obtained inequalities, we
get

∑
i∈I(y)

λ̂i ( fi ◦ E) (z) −
∑

i∈I(y)

λ̂i ( fi ◦ E) (y) +

∑
j∈J(y)

µ̂ j
(
g j ◦ E

)
(z) −

∑
j∈J(y)

µ̂ j
(
g j ◦ E

)
(y) +

∑
t∈T +(y)

ξ̂+
t (ht ◦ E) (z) −

∑
t∈T +(y)

ξ̂+
t (ht ◦ E) (y)−

∑
t∈T−(y)

ξ̂−t (ht ◦ E) (z) +
∑

t∈T−(y)

ξ̂−t (ht ◦ E) (y) =

∑
i∈I(y)

λ̂i∇ ( fi ◦ E) (y) η (E (z) , E (y)) +

∑
j∈J(y)

µ̂ j∇
(
g j ◦ E

)
(y) η (E (z) , E (y)) +

∑
t∈T +(y)

ξ̂+
t ∇ (ht ◦ E) (y) η (E (z) , E (y))−

∑
t∈T−(y)

ξ̂−t ∇ (ht ◦ E) (y) η (E (z) , E (y)) . (40)

Using Equations (31)-(34) in the above inequality , we
get

∑
i∈I(y)

λ̂i ( fi ◦ E) (z) +
∑

j∈J(y)

µ̂ j
(
g j ◦ E

)
(z) +

∑
t∈T +(y)

ξ̂+
t (ht ◦ E) (z) +

∑
t∈T−(y)

ξ̂−t (ht ◦ E) (z) =

∑
i∈I(y)

λ̂i ( fi ◦ E) (y) +
∑

j∈J(y)

µ̂ j
(
g j ◦ E

)
(y) +

∑
t∈T +(y)

ξ̂+
t (ht ◦ E) (y) +

∑
t∈T−(y)

ξ̂−t (ht ◦ E) (y) (41)

From the feasibility of x in problem (VP), it follows
that ∑

i∈I(y)

λ̂i ( fi ◦ E) (z) =
∑

i∈I(y)

λ̂i ( fi ◦ E) (y) +

∑
j∈J(y)

µ̂ j
(
g j ◦ E

)
(y) +

∑
t∈T +(y)

ξ̂+
t (ht ◦ E) (y) +

∑
t∈T−(y)

ξ̂−t (ht ◦ E) (y) . (42)

Taking into account the Lagrange multipliers equal to
0, we obtain

p∑
i=1

λi ( fi ◦ E) (z) =
p∑

i=1

λi ( fi ◦ E) (y)+

m∑
j=1

µ j
(
g j ◦ E

)
(y) +

s∑
t=1

ξt (ht ◦ E) (y). (43)

By the definition of the scalar Lagrange function ψE ,
we have that the inequality

λ ( f ◦ E) (z) = ψE (y, λ, µ, ξ) .

holds, this means that the proof of weak duality the-
orem between the E-vector optimization problems
(VPE) and (WDE) is completed. Then, the weak
E-duality theorem between the problems (VP) and
(WDE), that is, the relation (22) follows directly from
Lemma 9. Thus, the proof of this theorem is com-
pleted. ut

Theorem 16 (Strong duality between (VPE) and
(WDE) and also strong E-duality between (VP) and
(WDE)). Let x ∈ ΩE be a (weak) Pareto solution of
the E-vector optimization problem (VPE) and the E-
Guignard constraint qualification (GCQE) be satisfied
at x. Then there exist λ ∈ Rp, µ ∈ Rm, ξ ∈ Rq such that
(x, λ, µ, ξ) is feasible for the problem (WDE) and the
objective functions of (VPE) and (WDE) are equal at
these points. If also all hypotheses of the weak duality
theorem (Theorem 15 ) are satisfied, then (x, λ, µ, ξ)
is a (weak) efficient solution of maximum type for the
problem (WDE).
In other words, in such a case, E (x) ∈ Ω is a (weak)
E-Pareto solution of the multiobjective programming
problem (VP) and the strong E-duality holds between
the problems (VP) and (WDE).
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Proof: By assumption, x ∈ ΩE is a (weak) Pareto op-
timal solution of problem (VPE) and the E-Guignard
constraint qualification (GCQE) is satisfied at x. Then,
there exist Lagrange multiplier λ ∈ Rp, µ ∈ Rm, ξ ∈ Rs

such that the E-Karush-Kuhn-Tucker necessary opti-
mality conditions (18)-(20) are satisfied at x. Thus,
the feasibility of (x, λ, µ, ξ) in problem (WDE) follows
directly from these conditions. By the weak duality
theorem (Theorem 15), it follows that the inequality
λ ( f ◦ E) (x) = ψE (y, λ, µ, ξ) is satisfied for any fea-
sible point (y, λ, µ, ξ) in dual problem (WDE). Using
the E-Karush-Kuhn-Tucker necessary optimality con-
dition (19) together with the feasibility of x in problem
(VPE), we get the inequality∑p

i=1 λi ( fi ◦ E) (x) +
∑m

j=1 µ j

(
g j ◦ E

)
(x)

+
∑s

t=1 ξt (ht ◦ E) (x) =
∑p

i=1 λi ( fi ◦ E) (y)
+

∑m
j=1 µ j

(
g j ◦ E

)
(y) +

∑s
t=1 ξt (ht ◦ E) (y)

(44)

is satisfied for any feasible point (y, λ, µ, ξ) in dual
problem (WDE). Hence, by (44), it follows that
(x, λ, µ, ξ) is a weak efficient point of maximum
type for Wolfe scaler E-dual problem (WDE). The
strong E-duality holds between the problems (VP)
and (WDE) follows directly from Lemma 10. Namely,
E (x) is a (weak) E-Pareto solution of the vector opti-
mization problem (VP) and then (x, λ, µ, ξ) is a (weak)
efficient solution of maximum type for the problem
(WDE). ut

Theorem 17 (Converse duality between (VPE) and
(WDE) and also converse E-duality between (VP) and
(WDE)). Let

(
x, λ, µ, ξ

)
be a (weak) efficient solution

of a maximum type in E-Wolfe dual problem (WDE)
such that x ∈ ΩE . Moreover, assume that the objec-
tive functions fi, i ∈ I, are (strictly) E-invex at x on
ΩE ∪ YE , the constraint functions g j, j ∈ J, are E-
invex at x on ΩE ∪ YE , the functions ht, t ∈ T + (E (x))
and the functions −ht, t ∈ T− (E (x)), are E-invex at x
on ΩE ∪ YE . Then x is a (weak) Pareto solution of the
problem (VPE) and, thus, E (x) is a (weak) E-Pareto
solution of the problem (VP).

Proof: Proof of this theorem follows directly from
Theorem 15. ut

4 Vector Wolfe E-duality results

In this section, a vector dual problem in the sense of
Wolfe is considered for the class of E-invex vector op-
timization problems with inequality and equality con-
straints. Let E : Rn → Rn be a given one-to-one and
onto operator. Consider the following dual problem

in the sense of Wolfe related to the considered vector
optimization problem (VP):

maximize ψE (y, µ, ξ) = ( f ◦ E) (y)

+

[ m∑
j=1

µ j
(
g j ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
]
e

s.t.
p∑

i=1

λi∇ ( fi ◦ E) (y) +

m∑
j=1

µ j∇
(
g j ◦ E

)
(y)

+

q∑
t=1

ξt∇ (ht ◦ E) (y) = 0, (WDE)

λ ∈ Rp, λ ≥ 0, λe = 1, e = (1, 1, ..., 1)T ∈ Rp,

µ ∈ Rm, µ = 0, ξ ∈ Rq,

where all functions are defined in the similar way as
for the considered vector optimization problem (VP)
and e = (1, ..., 1) ∈ Rp. Further, let

ΓE =

{
(y, λ, µ, ξ) ∈ Rn × Rp × Rm × Rq :

p∑
i=1

λi∇ ( fi ◦ E) (y) +

m∑
j=1

µ j∇(g j ◦ E)(y)

+

q∑
t=1

ξt∇(ht ◦ E)(y) = 0, λ ≥ 0, λe = 1, µ = 0
}
.

be the set of all feasible solutions of the problem
(WDE). Further, YE = {y ∈ X : (y, λ, µ, ξ) ∈ ΓE}.
We call the vector dual problem (WDE) Wolfe vector
E-dual problem or vector E-dual problem in the sense
of Wolfe.

Now, under E-invexity hypotheses, we prove du-
ality results between the E-vector problems (VPE) and
(WDE) and, thus, E-duality results between the prob-
lems (VP) and (WDE).

Theorem 18 (Weak duality between (VPE) and
(WDE) and also weak E-duality between (VP) and
(WDE)). Let z and (y, λ, µ, ξ) be any feasible solutions
of the problems (VPE) and (WDE), respectively. As-
sume, moreover, that each objective function fi, i ∈ I,
is E-invex at y on ΩE ∪ YE , each constraint function
g j, j ∈ J, is an E-invex function at y on ΩE ∪ YE ,
the functions ht, t ∈ T + (E (y)) and the functions −ht,
t ∈ T− (E (y)), are E-invex at y on ΩE ∪ YE . Then

( f ◦ E) (z) ≮ ψE (y, µ, ξ) . (45)

In other words, E-weak duality holds between the
problems (VP) and (WDE), that is, for any feasible
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solutions x and (y, λ, µ, ξ) of the problems (VP) and
(WDE), respectively, the following relation

f (x) ≮ ψE (y, µ, ξ) (46)

is true.

Proof: Suppose, contrary to the result, that

( f ◦ E) (z) < ψE (y, µ, ξ)

Thus,
( fi ◦ E) (z) < ( fi ◦ E) (y)

+

[ m∑
j=1

µ j
(
g j ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
]
e, i ∈ I.

Multiplying by λi and then adding both sides of the
above inequalities and taking that

∑p
i=1 λi = 1, we get

the inequality

p∑
i=1

λi ( fi ◦ E) (z) <
p∑

i=1

λi ( fi ◦ E) (y)+
m∑

j=1

µ j
(
g j ◦ E

)
(y)

+

q∑
t=1

ξt (ht ◦ E) (y)

holds. From the feasibility of z for the problem (VPE),
it follows that

p∑
i=1

λi ( fi ◦ E) (z)+
m∑

j=1

µ j
(
g j ◦ E

)
(z)+

q∑
t=1

ξt (ht ◦ E) (z)

<

p∑
i=1

λi ( fi ◦ E) (y) +

m∑
j=1

µ j
(
g j ◦ E

)
(y)+

q∑
t=1

ξt (ht ◦ E) (y). (47)

By assumption, z and (y, λ, µ, ξ) are feasible solu-
tions for the problems (VPE) and (WDE), respectively.
Since the functions fi, i ∈ I, g j, j ∈ J, ht, t ∈ T +, −ht,
t ∈ T−, are E-invex on ΩE ∪ YE , by Definition 3, the
inequalities

( fi ◦ E) (z) − ( fi ◦ E) (y) =

∇ ( fi ◦ E) (y) η (E (z) , E (y)) , i ∈ I, (48)(
g j ◦ E

)
(z) −

(
g j ◦ E

)
(y) =

∇
(
g j ◦ E

)
(y) η (E (z) , E (y)) , j ∈ JE (y) , (49)

(ht ◦ E) (z) − (ht ◦ E) (y) =

∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T + (E (y)) , (50)

− (ht ◦ E) (z) + (ht ◦ E) (y) =

−∇ (ht ◦ E) (y) η (E (z) , E (y)) , t ∈ T− (E (y)) (51)

hold, respectively. Multiplying inequalities (48)-(51)
by the corresponding Lagrange multiplier and then
adding both sides of the resulting inequalities, we ob-
tain that the inequality

p∑
i=1

λi ( fi ◦ E) (z)−
p∑

i=1

λi ( fi ◦ E) (y)+
m∑

j=1

µi
(
g j ◦ E

)
(z)

−

m∑
j=1

µi
(
g j ◦ E

)
(y)+

q∑
t=1

ξi (ht ◦ E) (z)−
q∑

t=1

ξi (ht ◦ E) (y)

=
[ p∑

i=1

λi∇ ( fi ◦ E) (y) +

m∑
j=1

µi∇
(
g j ◦ E

)
(y) +

q∑
t=1

ξi∇ (ht ◦ E) (y)
]
η (E (z) , E (y))

holds. Thus, by (47), it follows that the inequality

[ p∑
i=1

λi∇ ( fi ◦ E) (y) +

m∑
j=1

µi∇
(
g j ◦ E

)
(y)

+

q∑
t=1

ξi∇ (ht ◦ E) (y)
]
η (E (z) , E (y)) < 0

holds, contradicting the first constraint of the Wolfe
vector E-dual problem (WDE). This means that the
proof of weak duality theorem between the E-vector
optimization problems (VPE) and (WDE) is com-
pleted. Then, the weak E-duality theorem between
the problems (VP) and (WDE), that is, the relation
(46) follows directly from Lemma 9. Thus, the proof
of this theorem is completed. ut

If stronger E-invexity hypotheses are imposed on
the functions constituting the considered vector opti-
mization problems, then the stronger weak duality re-
sult is satisfied.

Theorem 19 (Weak duality between (VPE) and
(WDE) and also weak E-duality between (VP) and
(WDE)). Let z and (y, λ, µ, ξ) be any feasible solutions
of the problems (VPE) and (WDE), respectively. As-
sume, moreover, that each objective function fi, i ∈ I,
is strictly E-invex at y on ΩE ∪ YE , each constraint
function g j, j ∈ J, is an E-invex function at y on
ΩE ∪ YE , the functions ht, t ∈ T + (E (y)) and the func-
tions −ht, t ∈ T− (E (y)), are E-invex at y on ΩE ∪ YE .
Then

( f ◦ E) (z) 
 ψE (y, µ, ξ) . (52)
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In other words, weak E-duality holds between the
problems (VP) and (WDE), that is, for any feasible
solutions x and (y, λ, µ, ξ) of the problems (VP) and
(WDE), respectively,

f (x) 
 ψE (y, µ, ξ) . (53)

Remark 20 As it follows from the proofs of Theorems
18 and 19, the assumption of E-invexity of constraints
functions can be weakened. Indeed, these results can
be established if each constraint functions g j, j ∈ J,
ht, t ∈ T + (y) and the functions −ht, t ∈ T− (y), are
assumed to be quasi E-invex at y on ΩE ∪ YE .

Theorem 21 (Strong duality between (VPE) and
(WDE) and also strong E-duality between (VP) and
(WDE)). Let x ∈ ΩE be a (weak) Pareto solution of
the E-vector optimization problem (VP) and the E-
Guignard constraint qualification (GCQE) be satisfied
at x. Then there exist λ ∈ Rp, µ ∈ Rm, ξ ∈ Rq such that
(x, λ, µ, ξ) is feasible for the problem (WDE) and the
objective functions of (VPE) and (WDE) are equal at
these points. If also all hypotheses of the weak dual-
ity theorem (Theorem 18 or Theorem 19) are satisfied,
then (x, λ, µ, ξ) is a (weak) efficient solution of maxi-
mum type for the problem (WDE).
In other words, in such a case, E (x) ∈ Ω is a (weak)
E-Pareto solution of the multiobjective programming
problem (VP) and the strong E-duality holds between
the problems (VP) and (WDE).

Proof: By assumption, x ∈ ΩE is a weak Pareto solu-
tion for the problem (VPE) and the E-Guignard con-
straint qualification (GCQE) is satisfied at x. Then,
there exist Lagrange multiplier λ ∈ Rp, µ ∈ Rm,
ξ ∈ Rq such that the E-Karush-Kuhn-Tucker neces-
sary optimality conditions (18)-(20) are satisfied at
x. Thus, the feasibility of (x, λ, µ, ξ) in the problem
(WDE) follows directly from these conditions. There-
fore, the objective functions for the problems (VPE)
and (WDE) are equal at x and (x, λ, µ, ξ), respectively.
By the weak duality theorem (Theorem 18 or Theo-
rem 19), it follows that the inequality ( f ◦ E) (x) ≮
ψE (y, µ, ξ) (or ( f ◦ E) (x) 
 ψE (y, µ, ξ)) is satisfied
for any feasible point (y, λ, µ, ξ) of Wolfe vector E-
dual problem (WDE). Using the E-Karush-Kuhn-
Tucker necessary optimality conditions (19) and (20)
we get, for any feasible point (y, λ, µ, ξ) of the prob-
lem (WDE), that

( f ◦ E) (x) +

[ m∑
j=1

µ j
(
g j ◦ E

)
(x) +

q∑
t=1

ξt (ht ◦ E) (x)
]
e

≮ ( f ◦ E) (y)+
[ m∑

j=1

µ j
(
g j ◦ E

)
(y)+

q∑
t=1

ξt (ht ◦ E) (y)
]
e.

(54)

Hence, by (54), it follows that (x, λ, µ, ξ) is a weak effi-
cient point of maximum type for Wolfe vector E-dual
problem (WDE). The strong E-duality holds between
the problems (VP) and (WDE) follows directly from
Lemma 10. Namely, E (x) is a (weak) E-Pareto solu-
tion of the vector optimization problem (VP) and then
(x, λ, µ, ξ) is a (weak) efficient solution of maximum
type for the problem (WDE). ut

Theorem 22 (Converse duality between (VPE) and
(WDE) and also converse E-duality between (VP) and
(WDE)). Let

(
x, λ, µ, ξ

)
be a (weak) efficient solution

of a maximum type in the vector E-Wolfe dual problem
(WDE) such that x ∈ ΩE . Moreover, assume that the
objective functions fi, i ∈ I, are (strictly) E-invex at x
on ΩE ∪ YE , the constraint functions g j, j ∈ J, are E-
invex at x on ΩE ∪ YE , the functions ht, t ∈ T + (E (x))
and the functions −ht, t ∈ T− (E (x)), are E-invex at x
on ΩE ∪ YE . Then x is a (weak) Pareto solution of the
problem (VPE) and, thus, E (x) is a (weak) E-Pareto
solution of the problem (VP).

Proof: Proof of this theorem follows directly from
Theorem 18 (or Theorem 19). ut

Theorem 23 (Restricted converse duality between
(VPE) and (WDE) and also restricted converse E-
duality between (VP) and (WDE)). Let x and(
y, λ, µ, ξ

)
be feasible solutions for the problems

(VPE) and (WDE), respectively, such that

( f ◦ E) (x) < ( f ◦ E) (y) +

[ m∑
j=1

µ j

(
g j ◦ E

)
(y)+

q∑
t=1

ξt (ht ◦ E) (y)
]
e. (≤) (55)

Moreover, assume that the objective functions fi, i ∈ I,
are (strictly) E-invex at y on ΩE ∪ YE , the constraint
functions g j, j ∈ J, are E-invex at y on ΩE ∪ YE ,
the functions ht, t ∈ T + (E (y)) and functions −ht,
t ∈ T− (E (y)), are E-invex at y on ΩE ∪ YE . Then
x = y, that is, x is a (weak) Pareto solution of the prob-
lem (VPE) and

(
y, λ, µ, ξ

)
is a (weak) efficient point

of maximum type for the problem (WDE). In other
words, E (x) is a weak E-Pareto (E-Pareto) solution of
the problem (VP) and

(
y, λ, µ, ξ

)
is a (weak) efficient

solution of maximum type for the problem (WDE).

Proof: Note that, by (55), it follows that

( fi ◦ E) (x) < ( fi ◦ E) (y) +

m∑
j=1

µ j

(
g j ◦ E

)
(y)+
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q∑
t=1

ξt (ht ◦ E) (y), i ∈ I. (56)

Multiplying each inequality (56) by λi, i ∈ I, and then
adding both sides of the resulting inequalities, we get

p∑
i=1

λi ( f ◦ E) (x) <
p∑

i=1

λi ( f ◦ E) (y)+

[ m∑
j=1

µ j

(
g j ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y)
] p∑

i=1

λi. (57)

Since
∑p

i=1 λi = 1, (57) implies

p∑
i=1

λi ( fi ◦ E) (x) <
p∑

i=1

λi ( fi ◦ E) (y)+

m∑
j=1

µ j

(
g j ◦ E

)
(y) +

q∑
t=1

ξt (ht ◦ E) (y). (58)

Now, we proceed by contradiction. Suppose, contrary
to the result, that x , y. By assumption, the functions
fi, i ∈ I, g j, j ∈ J(E(y)), ht, t ∈ T + (E (y)), and −ht,
t ∈ T− (E (y)) are E-invex at y on ΩE ∪ Y . Then, by
Definition 3, the inequalities

( fi ◦ E) (x) − ( fi ◦ E) (y) =

∇ ( fi ◦ E) (y) η (E (x) , E (y)) , i ∈ I, (59)(
g j ◦ E

)
(x) −

(
g j ◦ E

)
(y) =

∇
(
g j ◦ E

)
(y) η (E (x) , E (y)) , j ∈ J (E (y)) , (60)

(ht ◦ E) (x) − (ht ◦ E) (y) =

∇ (ht ◦ E) (y) η (E (x) , E (y)) , t ∈ T + (E (y)) , (61)

− (ht ◦ E) (x) + (ht ◦ E) (y) =

−∇ (ht ◦ E) (y) η (E (x) , E (y)) , t ∈ T− (E (y)) (62)

hold, respectively. Multiplying inequalities (59)-(62)
by the corresponding Lagrange multipliers and then
adding both sides of the resulting inequalities, we get

p∑
i=1

λi ( fi ◦ E) (x)−
p∑

i=1

λi ( fi ◦ E) (y)+
m∑

j=1

µi

(
g j ◦ E

)
(x)

−

m∑
j=1

µi

(
g j ◦ E

)
(y) +

q∑
t=1

ξi (ht ◦ E) (x)−

q∑
t=1

ξi (ht ◦ E) (y) =

[ p∑
i=1

λi∇ ( fi ◦ E) (y) +

m∑
j=1

µi∇
(
g j ◦ E

)
(y) +

q∑
t=1

ξi∇ (ht ◦ E) (y)
]
η (E (x) , E (y)) (63)

By (63) and the first constraint of (WDE), it follows
that

p∑
i=1

λi ( fi ◦ E) (x)+
m∑

j=1

µ j

(
g j ◦ E

)
(x)+

q∑
t=1

ξt (ht ◦ E) (x)

=

p∑
i=1

λi ( fi ◦ E) (y)+
m∑

j=1

µ j

(
g j ◦ E

)
(y)+

q∑
t=1

ξt (ht ◦ E) (y).

Hence, by x ∈ ΩE , we get that the following inequality

p∑
i=1

λi ( fi ◦ E) (x) =
p∑

i=1

λi ( fi ◦ E) (y)+
m∑

j=1

µ j

(
g j ◦ E

)
(y)+

q∑
t=1

ξt (ht ◦ E) (y). (64)

holds, contradicting (58). Then, x = y and this means,
by weak duality (Theorem 18) that x is a weak Pareto
solution of the problem (VPE) and

(
y, λ, µ, ξ

)
is a weak

efficient solution of maximum type for the problem
(WDE). Further, by Lemma 10, it follows that E (x) is
a weak E-Pareto solution of the problem (VPE) and(
y, λ, µ, ξ

)
is a weak efficient solution of maximum

type for the problem (WDE). Thus, the proof of this
theorem is completed. ut

5 Concluding remarks

In this paper, the class of E-differentiable vector op-
timization problems with both inequality and equal-
ity constraints has been considered. For such (not
necessarily) differentiable vector optimization prob-
lems. The so-called scalar and vector Wolfe E-dual
problems have been defined for the considered E-
differentiable E-invexity multiobjective programming
problem with both inequality and equality constraints
and several E-dual theorems have been established
also under (generalized) E-invexity hypotheses.

However, some interesting topics for further re-
search remain. It would be of interest to investigate
whether it is possible to prove similar results for other
classes of E-differentiable vector optimization prob-
lems. We shall investigate these questions in subse-
quent papers.
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